
线性聚能战斗部对穿甲弹毁伤效应数值模拟
Numerical Simulation of Damage Effect of Linear Shaped Charge Warhead on Armor Piercing Projectile
针对在分析线性聚能战斗部对穿甲弹毁伤效果时,由于多因素存在共线性而无法有效建立数学模型的问题,采用ANSYS/LS-DYNA软件,以径向侵彻深度和穿甲弹质量损失为目标函数进行数值仿真。利用偏最小二乘拟合方法,构建出装药宽度、装药高度、曲率半径和药型罩壁厚对径向侵彻深度和穿甲弹质量损失的半经验数学模型。结果表明:药型罩曲率半径的降低可提升对穿甲弹的毁伤效果;药型罩壁厚的增加有利于提高穿甲弹的质量损失,但对穿甲弹的径向侵彻深度有不利影响;所建立的半经验数学模型与16组数值仿真及对照组的结果吻合较好。可为优化和估算线性聚能战斗部对穿甲弹的拦截效果提供一定的参考。
Aiming at the problem that the mathematical model cannot be established effectively due to the collinearity of many factors when analyzing the damage effect of linear shaped charge warhead on armor piercing projectile, the numerical simulation is carried out with the radial penetration depth and armor piercing projectile mass loss as the objective function by using ANSYS/LS-DYNA software. A semi empirical mathematical model of the effects of charge width, charge height, radius of curvature and liner wall thickness on radial penetration depth and mass loss of armor piercing projectile is constructed by using partial least square fitting method. The results show that the damage effect of armor piercing projectile can be improved by reducing the curvature radius of the liner. The increase in liner wall thickness is beneficial to improve the mass loss of armor piercing projectile, but has an adverse effect on the radial penetration depth of armor piercing projectile. The established semi empirical mathematical model is in good agreement with the results of 16 groups of numerical simulation and the control group. It can provide some reference significance of optimizing and estimating the interception effect of linear shaped charge warhead on armor piercing projectile.
线性聚能战斗部 / 穿甲弹 / 偏最小二乘法 / 数值模拟 {{custom_keyword}} /
liner EFP / armor-piercing projectile / partial least-square method / numerical simulation {{custom_keyword}} /
表1 炸药材料参数Table 1 Explosive material parameters |
ρ/ (g/cm3) | D/(m/s) | A | B | R1 | R2 | ω |
---|---|---|---|---|---|---|
1.891 | 0.911 | 7.783 | 0.070 7 | 4.2 | 1 | 0.3 |
表2 铜、钨合金材料参数Table 2 Tungsten-copper alloy material parameters |
Material | ρ/ (g/cm3) | A/ Mbar | B/ Mbar | N | C |
---|---|---|---|---|---|
Copper | 8.96 | 0.000 9 | 0.029 2 | 0.31 | 0.025 |
Tungsten alloy | 17.6 | 0.015 1 | 0.001 77 | 0.008 | 0.016 |
表3 L44因素与水平设计表Table 3 L44 factor and level design table |
Level | x1/cm | x2 | x3 | x4/% |
---|---|---|---|---|
1 | 8 | 0.8 | 0.6 | 4 |
2 | 12 | 1 | 0.7 | 7 |
3 | 16 | 1.2 | 0.8 | 10 |
4 | 20 | 1.4 | 0.9 | 13 |
表4 4因素的PLS回归系数Table 4 PLS regression coefficient of four factors |
Regression parameter | Mass loss/g | Radial penetration depth/cm |
---|---|---|
Constant | -206.15 | -2.185 |
x1 | 19.661 | 0.204 |
x2 | -47.383 | -1.375 |
x3 | 145.404 | 3.200 |
x4 | 3.769 | -0.111 |
[1] |
尹建平, 王志军, 熊永家, 等. 药型罩曲率半径对周向MLEFP成型的影响[J]. 含能材料, 2013, 21(4): 512-516.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
石佳乐, 马天宝. 基于代理模型的LEFP结构优化与仿真[J]. 兵器装备工程学报, 2021, 42(6): 123-128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
苟瑞君. 线性爆炸成型侵彻体形成机理研究[D]. 南京: 南京理工大学, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
尹建平, 王志军. 弹药学[M]. 北京: 北京理工大学出版社, 2015: 134-135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
付璐, 尹建平, 王志军, 等. 周向毁伤线性聚能战斗部威力的仿真[J]. 弹箭与制导学报, 2011, 31(4): 76-78.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
聂鹏松, 刘天生, 阮光光, 等. LEFP对杆式穿甲弹干扰的数值模拟[J]. 火炸药学报, 2018, 41(1): 97-101.
为探究锆粉含量对高能推进剂能量特性的影响规律,利用热力学计算软件CEA分析了不同锆含量的Zr/Al基NEPE推进剂和Zr/Al基叠氮高能推进剂的能量特性;通过计算这两种推进剂的燃烧温度、密度、比冲和密度比冲等能量特性参数,得到了锆含量对推进剂能量特性参数的影响规律,并将结果与ZrH<sub>2</sub>/Al基高能推进剂进行对比分析。结果表明,随着Zr含量增加,NEPE推进剂的燃烧温度和比冲均呈下降趋势,密度比冲持续上升,但考虑推进剂的能量特性和高燃温条件下的不稳定燃烧,认为在推进剂中添加质量分数3%~5%的Zr粉较适中;随着Zr含量增加,叠氮高能推进剂的燃烧温度和比冲呈现先增后减的趋势,且分别在Zr粉质量分数为6%和3%左右达到最大值,推进剂密度比冲持续上升。ZrH<sub>2</sub>/Al基推进剂的能量性能低于Zr/Al基推进剂的。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
沈磊, 张志安, 陈俊, 等. 基于LEFP拦截高速动能弹的建模及仿真[J]. 火力与指挥控制, 2014, 39(2): 64-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
成乐乐, 赵太勇, 陈智刚, 等. LEFP切割杆式穿甲弹的数值模拟研究[J]. 火炮发射与控制学报, 2018, 39(2): 44-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
章冠人. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
李兵. LEFP对高速动能穿甲弹及聚能装药战斗部的拦截分析[D]. 南京: 南京理工大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
李晓杰, 闫鸿浩, 王小红, 等. Mie-Grüneisen状态方程的物理力学释义[J]. 高压物理学报, 2014, 28(2): 227-231.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
段卫毅, 杜忠华. LEFP战斗部成型因素的正交设计研究[J]. 弹箭与制导学报, 2010, 30(2): 123-125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
张明丛. 周向MLEFP成型机理研究[D]. 南京: 南京理工大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
韩阳阳, 尹建平, 王志军, 等. 钢/铝/钢复合药型罩形成毁伤元数值模拟研究[J]. 兵器材料科学与工程, 2018, 41(1): 42-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
段卫毅. 线性爆炸成型侵彻体成型机理与侵彻研究[D]. 南京: 南京理工大学, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
方维凤, 张超, 魏士贞, 等. LEFP侵彻性能研究[J]. 兵器材料科学与工程, 2011, 34(6): 55-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
孙凤林. 偏最小二乘回归法非线性建模及其递推算法的研究[D]. 广州: 华南理工大学, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |