
基于轻量级多尺度注意力U-Net的遥感图像飞机检测方法
Lightweight Multi-scale Attention U-Net for Aircraft Detection in Remote Sensing Image
针对传统U-Net对于目标小、分辨率低和背景复杂的遥感图像的飞机检测率低问题,提出一种轻量级多尺度注意力U-Net模型(LWMSAU-Net)。该模型由相互对应的编码子网络和解码子网络组成,编码子网络采用多尺度模块,在编码和对应的解码模块之间使用残差跳跃连接模块,将图像的浅层特征与深层特征融合,通过增加浅层特征的权重,更多地保留飞机图像的边缘和细微结构特征,最后的编码模块采用残差注意力连接模块,连接编码子网络和解码子网络,加强对小尺度飞机目标的检测。解码路径在每个模块反褶积将特征图的大小乘以2,使特征图的数量减半,并与对称编码路径的特征图相结合。与U-Net相比,LWMSAU-Net的层数减少1,在遥感飞机图像数据集上进行实验,结果表明该方法能够有效检测遥感图像飞机,准确率可达94.72%。
As for the low aircraft detection rate by the traditional U-Net due to small aircraft targets, low resolution and complex background, a lightweight multi-scale attention U-Net model (LWMSAU-Net) is proposed. The model consists of encoding and decoding subnetworks corresponding to each other. The encoding subnetwork adopts multi-scale modules, and the residual jump connection module is used between the encoding and the corresponding decoding module to fuse the shallow features and deep features of the image, the more of the edge and fine structural features of the aircraft image is preserved by increasing the weight of shallow features and preserving. The last encoding module adopts residual attention connection module to connect encoding subnetwork and decoding subnetwork to strengthen the detection of small scale aircraft targets. The decoding path consists of 4 modules, where each deconvolution multiplies the size of the feature graph by 2, halving the number of feature graphs, and then combines with the feature graph of the symmetric encoding path. Compared with U-Net, the number of layers of LWMSAU-Net is decreased by 1. Experiments on remote sensing aircraft image dataset shows that the proposed method can effectively detect aircraft targets in remote sensing images with an accuracy of 94.72%.
遥感图像 / 飞机检测 / U-Net / 注意力机制 / 轻量级多尺度注意力U-Net模型 {{custom_keyword}} /
remote sensing image / aircraft detection / U-Net / attention mechanism / lightweight multi-scale attention U-Net {{custom_keyword}} /
表1 5种U-Net类方法的飞机检测的平均准确率和模型的训练时间 |
参数 | U-Net | MSU- Net | LWU- Net | AU-Net | LWMSAU- Net |
---|---|---|---|---|---|
准确率/% | 84.25 | 92.13 | 89.35 | 91.54 | 94.22 |
训练时间/h | 4.46 | 3.74 | 1.79 | 2.44 | 1.48 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
兰旭婷, 郭中华, 李昌昊. 基于注意力与特征融合的光学遥感图像飞机目标检测[J]. 液晶与显示, 2021, 36(11):1506-1515.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
周涛, 董雅丽, 霍兵强, 等. U-Net网络医学图像分割应用综述[J]. 中国图象图形学报, 2021, 26(9):2058-2077.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
张翠军, 安冉, 马丽. 改进U-Net的遥感图像中建筑物变化检测[J]. 计算机工程与应用, 2021, 57(3):239-246.
提出了一种改进U-Net的遥感图像中建筑物变化检测方法,将变化检测问题转化为像素级二分类问题,利用U-Net模型对图像进行分类,把图像中的每个像素划分为变化类或非变化类,并根据变化类的像素得到建筑物的变化检测结果图。针对U-Net模型进行遥感图像中建筑物变化检测时,在训练中容易出现过拟合的现象,提出用非对称卷积块代替U-Net网络特征提取部分的标准卷积操作,增强卷积核的鲁棒性和网络的中心骨架,防止过拟合;针对变化检测数据集中图像背景复杂、小目标的变化情况容易被漏检的问题,提出在U-Net中引入注意力机制,抑制模型对非变化类像素特征的学习,加强对变化类特征的学习,提取到更适合的特征。实验结果表明,在引入非对称卷积块和注意力机制后,变化检测的F1分数有明显的提升。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
杨丹, 刘国如, 任梦成, 等. 多尺度卷积核U-Net模型的视网膜血管分割方法[J]. 东北大学学报(自然科学版), 2021, 42(1):7-14.
针对病变视网膜血管结构的计算机辅助诊断问题,提出了一种多尺度卷积核U-Net模型的视网膜血管分割方法.在U-Net模型基础上设计了融合Inception模块和最大索引值上采样方法的多尺度卷积神经网络结构.在网络训练阶段,采取旋转、镜像等操作进行数据集扩充,运用CLAHE算法进行图像预处理;训练后得到的双通道特征图,进行Softmax归一化;最后通过改进的代价损失函数对归一化结果迭代优化,得到完整的视网膜血管分割模型.实验结果表明,所提方法在DRIVE数据集上分割的准确率达到0.9694,灵敏性达到0.7762,特异性达到0.9835,比U-Net模型具有更优的分割效果和泛化能力,与其他现存方法相比具有一定的竞争力.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |