
基于Copula函数的导弹部件非线性退化研究
Research on Nonlinear Degeneration of Missile Components Based on Copula Function
为了解决某导弹部件的可靠性评估中的不确定性,提出了一种基于Copula函数的非线性退化模型。其中,如何解决导弹部件退化过程中的多性能参量问题至关重要,首先建立了基于Wiener过程的单性能退化模型;然后利用Copula函数进行相关性分析,并建立多性能退化模型;最后选取光纤陀螺仪作为实例,计算其退化过程的可靠度曲线,通过与真实评估结果及传统方法对比,文中方法更加接近真实结果。证明了所提出的方法能够更加合理的描述导弹部件的非线性退化过程,提高了评估结果的可信度。
To solve the uncertainty about reliability evaluation of missile components, a nonlinear degradation model based on Copula function was proposed in the work. However, how to solve multi-performance parameters during the degradation of missile components as the nonlinear degradation model is an essential problem. Firstly, a single performance degradation model based on Wiener process was chose. Then, the Copula function is used to analyze the correlation and establish a multi-performance degradation model. Finally, the fiber optic gyroscope is selected as an example to calculate the reliability curve. Compared with the real evaluation results and the traditional methods, this method is closer to the real result. It is proved that the proposed method can describe the nonlinear degradation process of missile components more reasonably and improve the credibility of the evaluation results.
可靠性评估 / 多性能 / 非线性 / Wiener过程 / Copula函数 {{custom_keyword}} /
reliability evaluation / multi-performance / nonlinear / Wiener process / Copula function {{custom_keyword}} /
表1 两种相关模型的AIC检验结果 |
模型 | AIC值 | |||
---|---|---|---|---|
Gumbel | Frank | Clayton | Gaussian | |
线性 | 58.527 | 62.255 | 71.693 | 77.622 |
非线性 | 125.418 | 173.132 | 143.434 | 117.852 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王小林, 程志君, 郭波. 基于维纳过程金属化膜电容器的剩余寿命预测[J]. 国防科技大学学报, 2011, 33(4):146-151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
王浩伟, 徐廷学, 刘勇. 基于随机参数 Gamma过程的剩余寿命预测方法[J]. 浙江大学学报(工学版), 2015, 49(4):699-704.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
韦艳华, 张世英. Copula理论及其在金融分析上的应用[M]. 北京: 清华大学出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
郝会兵. 基于贝叶斯更新与Copula理论的性能退化可靠性建模与评估方法研究[D]. 南京: 东南大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |