
Analysis of the Change of Throat Diameter Ablation Rate During the Operation of Solid Rocket Motor
ZHANG Nan, YE Yifan, PAN Ying, LIU Xinyao, MIAO Yuanyang
JPRMG ›› 2025, Vol. 45 ›› Issue (1) : 108-114.
Analysis of the Change of Throat Diameter Ablation Rate During the Operation of Solid Rocket Motor
Solid rocket engine nozzle throat liner needs to withstand the ablation, erosion of high temperature and high-pressure gas and it nozzle throat diameter ablation rate has a high probability being non-linear during the whole working process. At present, research about nozzle ablation both domestic and abroad is mainly focused on numerical simulation analysis and ablation test of the nozzle body, however, there's a lack of investigation on the link between the nozzle ablation process and the function of solid rocket motor. This paper is based on the differential evolution algorithm and radial basis function neural network, and established a method for calculating the ablation rate of the nozzle throat diameter based on the test curve of solid rocket motor. Based on the ground static test results of solid rocket motor, the curve of nozzle throat diameter ablation rate changing with motorworking time was obtained. The results showed that the ablation rate of the nozzle throat diameter was small in the early stage of the motor operation, and gradually increased with the increase of the working time, as the temperature of the nozzle throat increased, this caused the ablation rate increased, after a period of time, the temperature of the throat liner became constant, and the nozzle ablation rabe is maintained at 0.2 mm/s. And after the ablation of the surface of throat liner was fully completed, the inner surface was exposed; the ablation rate would increase again.
solid rocket motor / nozzle / throat diameter / ablation rate {{custom_keyword}} /
Table 1 Design values and the rate of change of the measured values after test of different characteristic parameters of the engine nozzle inner face %表1 发动机喷管内型面特征参数设计值及试验后测量值变化率 |
Characteristic parameters | Rate of change |
---|---|
Throat diameter | 16.4 |
Inner diameter of nozzle outlet | 0.27 |
Expansion ratio | 26.6 |
[1] |
陈汝训. 固体火箭发动机设计与研究[M]. 北京: 宇航出版社, 1991:10-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
任全彬, 何景轩, 刘伟凯. 固体火箭发动机设计技术基础[M]. 西安: 西北工业大学出版社, 2016:48-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李葆萱. 固体推进剂性能[M]. 西安: 西北工业大学出版社, 1990:135-138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
何景轩, 田维平, 何国强, 等. 基于遗传算法的固体火箭发动机参数优化设计[J]. 固体火箭技术, 2004, 27(4): 250-254.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
李媛, 周艳青, 孙展鹏, 等. 固体发动机喷管喉径烧蚀辨识技术[J]. 弹箭与制导学报, 2020, 40(2): 60-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
樊超, 张为华. 基于遗传算法的固体火箭发动机参数辨识[J]. 固体火箭技术, 2008, 31(4): 321-324.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
张晓光, 刘宇, 王长辉. 双脉冲固体发动机喷管传热烧蚀特性[J]. 航空动力学报, 2012, 27(6): 1391-1397.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
王立武, 田维平, 郭运强, 等. 固体火箭发动机喷管喉衬烧蚀研究进展[J]. 固体火箭技术, 2019, 42(2): 135-142.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王跃明, 唐求豪, 闫志巧, 等. 等离子喷涂成型Mo/ZrC复合喷管的烧蚀性能研究[J]. 固体火箭技术, 2018, 41(6): 778-786.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
张海亚. 固体火箭发动机的喷管烧蚀过程数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
要晋禹. 固体火箭发动机摆动喷管烧蚀过程的数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
张晓光, 王长辉, 刘宇, 等. 固体火箭发动机碳基材料喷管热化学烧蚀特性[J]. 推进技术, 2012, 33(1): 93-97.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
唐昊, 罗忠, 武生茂, 等. 固体火箭发动机喷管材料烧蚀仿真及分析[J]. 机械设计与制造, 2023, 52(8): 113-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
徐昌, 孙志宏. 基于动网格技术的碳碳三维喷管烧蚀仿真[J]. 东华大学学报(自然科学板), 2022, 48(6): 92-96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
冯喜平, 占豪杰, 王乐, 等. C/C复合材料喷管烧蚀壁面退移流固耦合仿真研究[J]. 推进技术, 2022, 46(5): 136-142.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
常桁, 王一白, 刘宇, 等. 固体火箭发动机碳基材料喷管机械侵蚀特性[J]. 航空动力学报, 2016, 31(3): 756-761.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
查柏林, 林浩, 高双林, 等. 粒子浓度对C/C 复合材料烧蚀行为的影响[J]. 材料工程, 2016, 44(7): 93-98.
为研究不同粒子浓度侵蚀条件下C/C复合材料的烧蚀机理及性能,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的C/C复合材料进行烧蚀/侵蚀实验,实验的粒子浓度分别为0,1.37%,2.22%,2.64%。采用扫描电镜(SEM)观察实验后试样的微观形貌,测算了试样的烧蚀率,研究了粒子浓度对材料烧蚀率的影响规律,分析了材料的烧蚀机理。结果表明:不加粒子时试样的质量烧蚀率仅为0.159g/s,线烧蚀率为0.175mm/s,加入粒子后质量烧蚀率与线烧蚀率的最小值分别为0.432g/s和0.843mm/s,且随粒子浓度的增加,烧蚀率均加速增加。粒子的侵蚀作用加剧了试样的烧蚀,冲刷面上径向纤维的烧蚀梯度随粒子浓度的增加而增大。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
刘漫丹. 一种新的启发式优化算法——五行环优化算法研究与分析[J]. 自动化学报, 2020, 46(5): 957-970.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
郝旺, 王占学, 张晓博, 等. 基于自适应差分进化算法的变循环发动机模型求解方法研究[J]. 推进技术, 2021, 42(9): 2011-2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
吴文海, 郭晓峰, 周思羽, 等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43(4): 1012-1021.
针对武器目标分配问题求解收敛速度慢、搜索效率低、寻优精度差的问题, 提出一种基于改进差分进化算法的武器目标分配方法。首先, 建立多约束条件下武器目标分配优化模型, 将动态武器目标分配问题离散为静态武器目标分配问题处理。其次, 采用随机邻域变异策略平衡差分进化算法全局探索和局部开发能力, 采用基于历史存档的自适应参数整定方法, 根据“精英”信息动态更新算法参数。最后, 通过与5种变种差分进化算法的对比实验, 验证了所提方法寻优精度高、收敛速度快、鲁棒性强的优点。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
刘育强, 魏庆生, 李浩然, 等. 基于径向基函数神经网络的空间漂浮机械臂装配控制[J]. 哈尔滨工程大学学报, 2023, 44(5): 831-836.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
张通彤, 姜湖海, 岳巍, 等. 基于径向基函数神经网络的光电系统自适应控制[J]. 兵工学报, 2022, 43(3): 556-564.
针对光电跟踪系统对于跟踪目标的高精度需求,在硬件设计选型、装调适配完成后,通常需要伺服控制系统设计合理的算法以改善跟踪精度。为持续提高伺服控制系统的综合能力,首先分析跟踪精度的误差模型,通过理论推导以及典型数值计算仿真的方式,验证伺服控制器控制增益对于跟踪精度改善的重要性。在对比多型控制算法基础上,提出基于径向基函数神经网络的自适应控制方法,发挥神经网络控制能够自行学习优化的特点,使伺服稳定平台控制系统具有更高的跟踪精度和更好的鲁棒性。数字仿真以及半实物实验验证结果表明,与传统PID、积分分离PID、单神经元PID控制方法相比,在存在载体扰动条件下,所提方法能够实现在3 Hz带宽内时滞最小约为28 ms,幅值误差在3 Hz处约为4%,可为光电跟踪系统设计实现高精度跟踪提供一种有效设计思路。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |