
Numerical Simulation Studies of the Separation Process of Eccentric Tail Cover
ZOU Wenting, ZHENG Jian, ZHANG Menglong
JPRMG ›› 2024, Vol. 44 ›› Issue (3) : 87-95.
Numerical Simulation Studies of the Separation Process of Eccentric Tail Cover
In order to realize the purpose of the tail cover being side-thrown away from the launch axis during the second ignition of the cold catapult missile, a new type of shroud throwing scheme was proposed: the eccentric tail cover and the nozzle outlet were connected by a sealing plug, and the gas jet was used as the power source to realize the side-throwing separation. Considering the influence of different centroid positions and horizontal lateral winds on the separation process, a three-dimensional tail mask separation model was established, combined with the overlapping dynamic mesh technology, the fluid control equation and the rigid body six-degree-of-freedom motion equation were coupled, and the tail cover separation process was numerically simulated. The variation curve of the motion characteristics of the tail cover when it is impacted by the jet and the interference characteristics of the tail cover on the flow field of the gas jet are obtained. The results show that the scheme can achieve the purpose of lateral throwing of the tail cover away from the emission axis. With the increase of the degree of centroid bias, it is beneficial for the jet state at the axis to be stable first. When the centroid position is greater than one-half radius, the jet has a greater accelerating rotation effect on the tail cover than the translational rotation, which increases the instability of the tail cover during the movement, and the tail cover tends to be close to the axis in the later stage of separation. The horizontal lateral wind is conducive to the tail cover to stay away from the axis, and the trend of moving away from the axis is more obvious with the increase of wind speed.
separation of tail cover / gas jet / centroid offset / sidewind / overlapping grids {{custom_keyword}} /
Table 1 Centroid positional parameter表1 质心位置参数 |
Case | Reference point | Coordinate | Sidewind speed/(m/s) |
---|---|---|---|
1 | 1 | (-0.25r,0,0) | 0 |
2 | 3 | (-0.50r,0,0) | 0 |
3 | 5 | (-0.75r,0,0) | 0 |
4 | 1 | (-0.25r,0,0) | 15 |
Table 2 Distribution of tail cover landing points表2 尾罩落点分布 |
Centroid No. | Speed of slidewind/(m/s) | Landing point on the X-axis/m | Distance from launch point/m |
---|---|---|---|
1 | 0 | 3.6 | 3.5 |
2 | 0 | 3.27 | 3.83 |
3 | 0 | 3.13 | 3.97 |
4 | 0 | 3.35 | 3.75 |
5 | 0 | 3.56 | 3.54 |
6 | 1~8 | 3.12 | 3.98 |
7 | 1~15 | 2.43 | 4.67 |
[1] |
华楠, 阎君. 新型尾罩分离方案及分离过程的仿真[J]. 导弹与航天运载技术, 2005(2): 6-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
晁锐, 杨蓉, 赵新强, 等. 一种滞留式尾罩分离技术[J]. 导弹与航天运载技术, 2013(3): 12-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李慧通, 赵阳, 田浩, 等. 导弹抛底罩过程建模与分析[J]. 航空学报, 2016, 37(6): 1876-1887.
导弹冷发射采用底罩保护一级发动机,发射后需要将底罩抛离。为了防止底罩撞击地面设备,采用了铰链连接的利用弹簧作为分离能源的侧抛分离方案。对分离运动及动力学特性进行了研究,建立了底罩旋抛过程的运动学和动力学模型。对导弹底罩分离过程中受到的气动力、弹簧力和空气负压力等多种不确定性因素进行了灵敏度分析,通过仿真得到了底罩脱离角度和弹簧相关参数对分离过程的影响,并进行了参数优化。最后对考虑多个偏差影响下的分离方案进行正交仿真试验,得到了主发动机点火时底罩质心散布范围和底罩落点范围。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
袁先旭, 杨明智, 陈坚强. 火箭发动机尾罩热分离流场的数值模拟[J]. 空气动力学学报, 2007, 25(1): 60-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
朱学昌, 李浩远, 喻天翔, 等. 低空高速飞行器整流罩分离技术研究现状和展望[J]. 固体火箭技术, 2014, 37(1): 12-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
田浩, 穆洲, 李慧通, 等. 导弹外头罩分离及落区预测仿真[J]. 系统仿真学报, 2018, 30(3): 1056-1062.
某些型号导弹发射过程中使用外头罩对内部设备进行保护,为了防止分离后外头罩砸伤工作人员或者相关设备,需要预测外头罩的落地位置范围,并采取相应的防护措施。针对某型导弹外头罩分离系统,在研究固体燃气发生器和正推火箭的外头罩分离方案基础上,建立了外头罩分离过程和坠落过程的动力学模型。采用蒙特卡洛打靶技术,经仿真计算,得到外头罩坠落过程的运动曲线和落点位置的分布范围。本文仿真结果能够为发射装置及人员防护设计提供技术支持。
Some missiles use head cover to protect the internal equipment during the launching process. In order to prevent the head cover from damaging the people or equipment after separation, researchers need to predict the landing position range and take protective measures. This paper designs a separation scheme for a missile head cover separation based on solid propellant gas generator and solid rocket. In this study, we establish a dynamic simulation model of head cover separation and falling procedure. The simulation calculation of the head cover location range considering multiple factors using <em>Monte-Carlo method is developed</em>. And the motional curve of separation bodies and<em> the danger zone of head cover landing location</em> are obtained. The simulation results in this paper will provide technical support for rocket launcher and personnel protection design.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
孙伟, 陈泽栋. 风载荷对飞行器尾罩分离影响的数值模拟分析[J]. 弹箭与制导学报, 2019, 39(6): 102-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
黄在胜, 郭则庆. 基于重叠网格技术的超声速子母弹分离研究[J]. 兵器装备工程学报, 2023, 44(7): 85-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
夏胜禹. 基于动网格技术燃气开盖研究[D]. 北京: 北京理工大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
朱孙科, 罗天洪, 徐向阳. 导弹尾部燃气冲击射流的流场特性仿真研究[J]. 计算机仿真, 2017, 34(2): 123-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
乔野, 聂万胜, 吴高杨, 等. 多喷管液体火箭动力系统尾焰冲击特性研究[J]. 推进技术, 2017, 38(3): 498-503.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
王洪武. 火箭一二级级间热分离仿真计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |