
Design of Embedded Simulation Training System for Portable Anti-tank Weapon
ZHAO Dandan, MENG Weizhen, ZHAO Hui, TIAN Liping
JPRMG ›› 2023, Vol. 43 ›› Issue (4) : 27-31.
Design of Embedded Simulation Training System for Portable Anti-tank Weapon
This paper describes the basic concept and present situation of embedded training, proposes the design idea of embedded simulation training system for portable anti-tank weapons, constructs the structure of embedded simulation training for weapons, designs the evaluation system of embedded simulation training for weapons, and calculates the weight of evaluation index in the evaluation system based on Analytic Hierarchy Process(AHP). This paper introduces the design of embedded weapon simulation training system, including hardware module design based on function decomposition and software design based on task flow. The embedded simulation training system can be used as a reference for designing similar products.
embedded / analytic hierarchy process / simulation training / evaluation {{custom_keyword}} /
Table 1 Evaluation metrics weight allocation of embedded simulation training system表1 嵌入式模拟训练系统评价指标权重分配表 |
Level 1 indicator | Weight | Level 2 indicator | Weight |
---|---|---|---|
Operation time | 0.332 | Target search time | 0.3 |
Missile power-up time | 0.2 | ||
Launch time | 0.3 | ||
Timeout time | 0.2 | ||
Operation action | 0.302 | Total number of operations | 0.2 |
Number of power-ups | 0.1 | ||
Number of locks | 0.2 | ||
Number of attack mode switches | 0.2 | ||
Number of launches | 0.3 | ||
Lock status | 0.143 | Lateral deviation | 0.3 |
Longitudinal deviation | 0.3 | ||
Size ratio of target/wave gate | 0.4 | ||
Launch attitude | 0.223 | Pitch angle | 0.25 |
Tilt angle | 0.25 | ||
Pitch frame angle of seek | 0.25 | ||
Yaw frame angle of seek | 0.25 |
Table 2 Training evaluation表2 训练评估值 |
No. | Training result | Trainee |
---|---|---|
1 | 95 | Shooter1 |
2 | 88 | Shooter2 |
3 | 83 | Shooter3 |
4 | 76 | Shooter4 |
5 | 94 | Shooter5 |
6 | 85 | Shooter6 |
7 | 92 | Shooter7 |
8 | 86 | Shooter8 |
9 | 84 | Shooter9 |
10 | 87 | Shooter10 |
11 | 89 | Shooter11 |
12 | 86 | Shooter12 |
[1] |
郑超, 周畅, 张阳, 等. 信息化条件下的训练装备体系研究[J]. 信息技术与信息化, 2020(1): 220-224.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
伊洪冰, 赵劲松, 夏勇, 等. 装备保障模拟训练模式探索与实践[J]. 军事交通学报, 2023, 2(2): 44-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
陈云, 王磊, 刘荣林. 某型战斗机嵌入式训练系统设计技术研究[J]. 计算机仿真, 2022, 39(1): 21-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
李伟, 李宗毅, 冯燕. 嵌入式训练及其在导弹部队的应用[J]. 军事运筹与系统工程, 2010, 24(3): 20-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
肖剑波, 胡大斌, 胡锦晖, 等. 船舶操控控制嵌入式训练系统设计与实现[J]. 现代电子技术, 2014, 37(20): 80-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
常海昕, 刘永亮, 徐清宇, 等. 一种便携式反坦克导弹模拟训练系统的构建[J]. 兵器装备工程学报, 2019, 40(12): 50-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
阳加远, 周畅, 邱煌彬, 等. 装备虚拟操作训练考核评价方法研究[J]. 电子设计工程, 2021, 29(19): 75-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
闫振龙, 鲁婷婷, 陈善平, 等. 大学生健康综合评价体系研究[J]. 西安交通大学学报, 2012, 32(6): 126-129.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王钦钊, 郭傲兵, 李小龙, 等. 基于AHP的装甲分队模拟训练成绩评估方法[J]. 计算机仿真, 2015, 32(10): 458-470.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
姚恺, 黄少罗, 王晋生, 等. 基于优化AHP的远火模拟训练成绩自主评定方法[J]. 现代防御技术, 2021, 49(4): 99-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
饶世钧, 姜宁, 洪俊, 水面舰艇编队嵌入式训练系统关键技术设计[J]. 火力与指挥控制, 2022, 47(7): 118-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
王泽璞, 王建国, 冯培伦, 等. 嵌入式发射控制训练系统开发设计[J]. 火力与指挥控制, 2018, 43(11): 143-146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
郝亮亮, 张金生, 李婷, 等. 导弹武器模拟训练考评系统设计[J]. 系统工程与电子技术, 2020, 42(4): 843-850.
为提高某导弹模拟训练系统中评估的客观性与准确性,确立以准确性、熟练度和操作人员状态为主的评价指标体系,构建适当的数学模型计算各子指标分值,将子指标定量化,解决由考官进行评判时存在的主观性强、标准不统一等缺点。利用专家系统,对考评过程中需要的专业知识和评价规则进行存储,实现了评分过程的自动化。针对层次分析法(analytic hierarchy process, AHP)需要多次赋值保证一致性和群组决策特征根法(group eigenvalue method, GEM)结构模糊的缺点,提出了基于AHP和GEM融合算法的权重设置方案,利用AHP-GEM算法对各子指标得分进行加权评估,最终形成了一套合理有效的模拟训练评估系统。最后,通过与考官人工评分的方法进行比较,验证了所提评分系统的合理性和准确性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |