
Numerical Simulation of Underground Structure Penetration and Explosion Based on SPH-FEM Method
ZHANG Wentang, SUN Huixiang, YUAN Yingjie, SUN Huiying, KANG Ting
JPRMG ›› 2023, Vol. 43 ›› Issue (1) : 77-84.
Numerical Simulation of Underground Structure Penetration and Explosion Based on SPH-FEM Method
In order to improve the survivability of underground protection engineering, it is necessary to accurately consider the damage to the structure caused by the continuous action of penetration and explosion. Through the SPH-FEM coupled numerical simulation method, the simulation of the entire process of penetration and explosion of underground structures is realized, which solves the simulation problem of high intensity and large deformation in the vicinity of the invasion and explosion by the traditional finite element method. According to the empirical formula, the validity of the model is verified. The results show that the penetration projectile has a sealing effect on the rock mass, which enhances the damage effect. SPH algorithm compensates for the penetration hole unloading defect of the erosion algorithm for the penetration explosion process, and more accurately simulates the joint effect of penetration explosion; pouring separately from the straight wall can reduce structural damage; In addition to arch feet, the vault and spandrel are the weak parts of the straight wall arch structure under the action of penetration explosion. The research results can provide a basis for the design of underground protective structures.
underground protective structure / penetration explosion / SPH-FEM method / numerical simulation / seal role {{custom_keyword}} /
Table 1 Material parameters of tungsten alloy cartridge case表1 钨合金弹壳的材料参数 |
ρ/(kg/m3) | G/GPa | A/GPa | B/GPa | N | C | M | Tm/K | Tr/K |
---|---|---|---|---|---|---|---|---|
17 800 | 150 | 1.2 | 0.177 | 0.12 | 0.016 | 1.00 | 1 793 | 294 |
ε0/s-1 | CP | Pc | D1 | D2 | D3 | D4 | D5 | EFmin |
1×10-6 | 4.7×10-6 | -9 | 2 | 0 | 0 | 0 | 0 | 10-6 |
Table 2 Material parameters of explosives表2 炸药的材料参数 |
ρ/(kg/m3) | A/GPa | B/GPa | PCJ/GPa | D/(km/s) | R1 | R2 | ω | E0/(GJ/m2) |
---|---|---|---|---|---|---|---|---|
1 630 | 542 | 7.68 | 29 | 6.93 | 4.2 | 1.1 | 0.3 | 8.0 |
Table 3 Comparison of results of numerical simulation and empirical formula表3 数值模拟与计算公式结果对比 |
Unit | Initiation distance/m | Analog value /MPa | Calculated value/MPa | Error/% |
---|---|---|---|---|
1 | 2.1 | 48.80 | 45.23 | 7.9 |
2 | 3.0 | 23.33 | 21.86 | 6.7 |
3 | 4.0 | 15.15 | 14.27 | 6.1 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
刘浩阳. 爆炸冲击荷载下混凝土重力坝动力响应及安全防护研究[D]. 武汉: 长江科学院, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
王光勇, 曹安生, 余锐, 等. 顶爆和拱腰侧爆同时作用下锚固洞室的动态响应[J]. 高压物理学报, 2020, 34(2): 118-125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
郭磊, 何勇, 潘绪超, 等. 高速侵彻混凝土弹体侵蚀效应试验研究[J]. 实验力学, 2020, 35(1): 82-90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
赵敏, 周子豪. 爆炸荷载下地铁盾构隧道动力响应研究[J]. 科学技术与工程, 2019, 19(34): 302-307.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
陈锐林, 董琪, 禹兵兵, 等. 近爆下泡沫混凝土复合结构在地下洞室的抗爆特性数值研究[J]. 计算力学学报, 2019, 36(2): 267-277.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
谢乐, 杨志勇, 李欢秋. 爆炸作用下矩形隧道衬砌结构动力响应研究[J]. 爆破, 2018, 35(4): 40-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
梁博, 蒋宏业, 徐涛龙, 等. 基于SPH-FEM耦合算法的埋地输气管道近场爆炸冲击动力响应[J]. 石油学报, 2017, 38(11):1326-1334.
利用ANSYS/LS-DYNA和LS-PREPOST前后处理模块,建立基于光滑粒子流体力学-有限单元法(SPH-FEM)耦合的土中爆炸模型。结果表明,土中爆炸波峰值压力随比例爆距的衰减规律与经验曲线基本一致,且瞬时爆腔尺寸也和相关经验描述吻合较好,从而验证了方法的可行性与准确性。针对X80大口径高压输气管线在土中近场爆炸的冲击响应过程,建立管-土-炸药耦合模型,分析起爆后不同时刻爆腔形状的演变过程(从球状到椭球状),得到不同时刻管体扰动(变形与受力)与土壤介质压缩形态的内在联系,详细描述管体迎爆面、背爆面测点的位移及应力特征,并反映最大冲击应力的截面分布情况及其在不同时刻的出现位置,最后,基于应变极限判断受冲击管道的失效情况。研究采用的耦合算法可为管道防爆研究提供新思路,对爆炸灾害下管体及周边结构的风险评估提供基于模拟分析的定量依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
强洪夫, 张国星, 王广, 等. SPH方法在宽速域岩石侵彻问题中的应用[J]. 高压物理学报, 2019, 33(5): 174-182.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
王海兵, 寿列枫, 张建鑫, 等. 弹丸撞击下花岗岩靶破坏效应实验与数值分析[J]. 岩石力学与工程学报, 2014, 33(2):366-375.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析[J]. 中南大学学报(自然科学版), 2017, 48(12): 3284-3292.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
胡英国, 卢文波, 陈明, 等. SPH-FEM耦合爆破损伤分析方法的实现与验证[J]. 岩石力学与工程学报, 2015, 34(增刊1):2740-2748.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
白金泽. LS-DYNA3D理论基础与实例解析[M]. 北京: 科学出版社, 2010: 185-192.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
胡玉峰, 宋殿义, 钱秋冬. 钻地武器及防护技术研究[C]// 中国力学学会.第28全国结构工程学术会议集. 北京: 工程力学编辑部, 2019: 271-276.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
唐奎, 王金相, 陈兴旺, 等. 夹心弹对半无限钢靶的侵彻特性[J]. 爆炸与冲击, 2020, 40(5): 87-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
匡志平, 陈少群. 混凝土K&C模型材料参数分析与模拟[J]. 力学季刊, 2015, 36(3): 517-526.
混凝土K&C模型材料参数一般取国外文献中的原始数值,没有根据混凝土强度等级和单元尺寸的不同而作相应的调整.根据相关的试验研究成果,提出了一种确定K&C模型强度参数值的方法,并阐述了K&C模型损伤参数值的调整方法,使得数值计算结果更加合理.运用有限元显式动力分析软件ANSYS/LSDYNA,采用流固耦合方法模拟爆炸荷载作用下钢筋混凝土板的动态响应,混凝土K&C模型取本文确定的参数值,计算结果与试验结果吻合较好,从而验证了K&C模型材料参数取值的正确性.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
孙惠香, 许金余, 朱国富, 等. 爆炸荷载作用下围岩与地下结构的动力相互作用[J]. 爆炸与冲击, 2013, 33(5): 519-524.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
刘佳鑫, 李秀地, 许珂, 等. 温压炸药爆炸作用下坑道衬砌动力响应研究[J]. 兵器装备工程学报, 2019, 40(3): 87-91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016: 348-366.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
冯慧平, 刘洪兵, 左兴, 等. 地下坑道对其临界震塌爆距处钻地武器爆炸载荷的动力响应[J]. 爆炸与冲击, 2014, 34(5): 539-546.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |