
Research on the Launching Dynamics of Vehicle-mounted Missile Based on Following-up and Time-varying Wind Load
JIAO Tianhang, JIANG Yi, WANG Deng, YAN Song
JPRMG ›› 2023, Vol. 43 ›› Issue (1) : 54-62.
Research on the Launching Dynamics of Vehicle-mounted Missile Based on Following-up and Time-varying Wind Load
In order to investigate the launch response characteristics of vehicle-mounted missile weapon system under following-up and time-varying wind load, a finite element simulation model of vehicle-mounted missile weapon system was established in ABAQUS based on dynamics principle and finite element method, and the ABAQUS user subroutine was innovatively used for joint secondary development to realize the real-time loading of the following-up wind load. The influence of wind force on missile attitude and the vibration of launcher are analyzed under different wind speed, eccentric thrust angle and ground angle. The results show that the wind load not only has a great influence on the attitude of the missile out of the barrel and the vibration of the launch barrel, but also promotes or hinders the launch accuracy deviation caused by the eccentric thrust Angle and the inclination of the ground.
following-up / time-varying / wind load / vehicle mounted missile launch system / ABAQUS user subroutine {{custom_keyword}} /
Table 1 Parameters of model materials表1 模型材料参数表 |
Components | Material | Density/ (kg/m3) | Elastic modulus/Pa | Poisson’s ratio |
---|---|---|---|---|
Frame and legs | Q235steel | 7.8×103 | 2.1×1011 | 0.30 |
Launcher and missile | Aluminium | 2.7×103 | 7.1×1010 | 0.33 |
Adapter | Polytene | 1.2×103 | 9.03×108 | 0.39 |
Table 2 Pitch angular displacements and pitch angular velocities at the moment of departure from the cylinder under different wind speeds表2 不同风速下离筒时刻俯仰角位移与俯仰角速度 |
Wind speed/ (m/s) | Pitch angular displacement/(°) | Pitch angular velocity/((°)/s) |
---|---|---|
0 | -0.004 96 | -0.064 73 |
15 | -0.025 12 | -0.261 18 |
17.5 | -0.032 68 | -0.336 59 |
20 | -0.041 56 | -0.426 27 |
22.5 | -0.051 71 | -0.528 58 |
25 | -0.063 21 | -0.644 00 |
Fig.15 Pitch angular displacement and pitch angular velocity of missile centroid under different engine thrust eccentricity angles图15 不同δ下导弹质心俯仰角位移与俯仰角速度 |
Table 3 Pitch angular displacements and pitch angular velocities at the moment of departure from the cylinder under different engine thrust eccentricity angles表3 不同δ下离筒时刻俯仰角位移与俯仰角速度 |
Engine thrust eccentricity angle/(°) | Pitch angular displacement/(°) | Pitch angular velocity/((°)/s) |
---|---|---|
-0.2 | 0.026 59 | 0.998 01 |
-0.1 | 0.010 38 | 0.248 38 |
0 | -0.041 56 | -0.426 27 |
0.1 | -0.077 30 | -1.150 34 |
0.2 | -0.116 68 | -1.937 60 |
Fig.19 Pitch angular displacement and pitch angular velocity of missile centroid under different ground inclination angles图19 不同地面倾角下导弹质心俯仰角位移与俯仰角速度 |
Table 4 Pitch angular displacement and pitch angular velocity at the moment of departure from the cylinder under different ground inclination angles表4 不同γ下离筒时刻俯仰角位移与俯仰角速度 |
Ground inclination angle/(°) | Pitch angular displacement/(°) | Pitch angular velocity/((°)/s) |
---|---|---|
-2 | -0.168 45 | -1.389 55 |
-1 | -0.103 10 | -0.914 69 |
0 | -0.041 56 | -0.426 27 |
1 | 0.011 80 | -0.019 62 |
2 | 0.140 72 | 0.850 50 |
[1] |
刘瑞卿. 垂直发射导弹地面风载荷响应特性研究[D]. 北京: 北京理工大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
刘瑞卿, 杨力, 鱼博, 等. 地面风载荷对导弹发射车系统稳定性影响分析[J]. 强度与环境, 2020, 47(3): 31-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李显龙, 瞿军, 边晓阳, 等. 风载荷对舰载导弹出筒影响的仿真[J]. 兵工自动化, 2018, 37(8): 6-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
高宇, 周仕明, 李道奎. 风载荷作用下井基导弹冷发射动力学仿真[J]. 兵器装备工程学报, 2021, 42(3): 28-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
黄韬. 基于参数化的某型装备发射动力学分析[D]. 南京: 南京理工大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
刘锡良, 周颖. 风荷载的几种模拟方法[J]. 工业建筑, 2005, 35(5): 81-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
姜毅, 魏昕林, 陈苗. 发射动力学[M]. 北京: 北京理工大学出版社, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
王志浩, 王勃漫, 倪志斌, 等. 车载双联装发射平台的发射过程影响因素分析[J]. 弹箭与制导学报, 2020, 40(6): 34-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
于情波, 杨国来, 葛建立. 基于随动边界的火炮身管热力联合效应数值分析[J]. 兵工学报, 2019, 40(4): 697-707.
为探索高温高压火药燃气瞬态冲击效应对身管刚度和强度响应的影响,采用有限元方法建立了某大口径火炮身管三维数值模型,并定义了热力载荷边界随弹丸运动而变化的动态过程。通过数值计算得到了首发弹射击条件下身管温度分布演变过程,进一步分析了热冲击载荷、压力载荷以及热力联合效应对身管动态应力响应的影响。计算结果表明:轴向不同位置热冲击载荷的差异性引起轴向非均匀温度分布,使得出现较大的轴向温度梯度,带来显著的轴向温差应力;在温度响应剧烈区域,周向表现为压应力的温差应力与周向表现为拉应力的载荷应力相互叠加,使得内壁质点周向应力分量表现为拉应力与压应力的交替作用,与压力激励作用结果相比,内壁高应力区应力幅值得到一定减弱并随温度响应呈现先下降、后上升的趋势。
In order to explore the transient impact effect of high-temperature and high-pressure propellant gas on the response to barrel strength, the finite element method is utilized to establish a three-dimensional numerical model for a large-caliber gun barrel. The variation of loading boundary of propellant gas with the projectile motion is defined. The evolution process of non-uniform distribution of temperature field in barrel at different moments under the first firing condition was obtained through numeric computation. The influences of thermal load, pressure and the heat-pressure joint effect on the dynamic stress response of barrel are further investigated, respectively. The calculated results show that the difference of thermal shock loads at different axial positions leads to an axial non-uniform temperature distribution, which makes the axial temperature gradient large and causes a significant axial thermal stress. In the area with intense temperature response, the compressive stress induced by thermal load and the tensile stress induced by pressure incircumferential direction make the stress component act as the interaction between the tensile stress and the compressive stress. Compared with the gas pressure effect, the stress amplitude in the high stress region on the inner wall is weakened, and presents a trend of falling first and then rising with the temperature. Key
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王涛, 黄广炎, 柳占立, 等. 基于ABAQUS的有限元子程序开发及应用[M]. 北京: 北京理工大学出版社, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |